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Solutions of Differential Equations (Section 1.1) 
 
Once again, our primary goal in this course is to solve differential equations.  Thus, we 
need to define what we mean by a solution. 
 
A function f defined on some interval I, that when substituted into a differential equation 
reduces the equation to an identity, is said to be a solution of the equation on the given 
interval. 
 
A solution of an nth order ordinary differential equation ( , , ',..., ) 0nF x y y y = is a function 
f  that possesses at least n derivatives and satisfies the equation 

( )( , ( ), '( ),..., ( )) 0nF x f x f x f x =  for all x in I. 
 
The interval I can represent an open interval (a, b), a closed interval [a, b], an infinite 
interval ( , )−∞ ∞ . 
 
Example 1: Verify that /2xy e−=  is a solution of the differential equation 2 ' 0y y+ = . 
 
Example 2: Verify that xy xe=  is a solution of the differential equation '' 2 ' 0y y y− + = . 
 
In thinking about solutions, we should think about the interval on which that solution is 
defined.  The interval I is called the interval of definition, the interval of existence, the 
interval of validity, or the domain of the solution.   
 

Example 3:  If C is a constant and 1( )y x
C x

=
−

, then 2
2

1
( )

dy y
dx C x

= =
−

.  Thus  

 
1( )y x

C x
=

−
 

 
defines a solution of the differential equation  
 

2dy y
dx

=  

 
(which, by the way, is a 1st order nonlinear ordinary differential equation) on any interval 

not containing x C= .  We say that 1( )y x
C x

=
−

 defines a solution of 2dy y
dx

= .  Note 

there is one solution for each value of the parameter C.  When C = 1, we have the 

particular solution 1( )
1

y x
x

=
−

.  Note that x = 1 is a vertical asymptote. Thus, the 
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formula 1( )
1

y x
x

=
−

 actually defines two solutions, one over the interval ( ,1)−∞ , and 

another over the interval (1, )∞ .  ■ 
 
The graph of the solution f of an ODE is called a solution curve.  The graph of the 
function f may be different than the graph of the solution f.  This is certainly the case in 
example above. 
 
When solving a 1st order linear ODE of the general form 0)',,( =yyxF , we usually 
obtain a solution containing a single arbitrary constant or parameter C.  Intuitively, this 
makes sense.  After all, we have an equation containing a single derivative.  If we wish to 
solve that equation, it stands to reason that we’ll have to integrate once.  When we 
calculate an indefinite integral, we always have a constant of integration. 
  
A solution of 0)',,( =yyxF  containing one arbitrary constant is called a one-parameter 
family of solutions.   
 
A solution of ( , , ', '') 0F x y y y =  containing two arbitrary constants and is called a two-
parameter family of solutions.   
 
A solution of 0),...,',,( )( =nyyyxF  contains n arbitrary constants and is called an n-
parameter family of solutions. 
 
A solution of a DE that is free of arbitrary parameters is called a particular solution.  
 
When a solution cannot be obtained by specifying the parameters in the family of 
solutions, it is called a singular solution. 
 
If every solution of the differential equation can be obtained by from an n-parameter 
family of solutions, then the n-parameter family of solutions is called a general solution. 
 

Example 4: 
2

21
4

y x c⎛ ⎞= +⎜ ⎟
⎝ ⎠

is a one-parameter family of solutions of the ODE 1/2'y xy= .  

(Verify this.)  When c = 0, the resulting particular solution is 41
16

y x= .  Note that y = 0 

is also a solution (check this), but it cannot be obtained by specifying a value for c in the 
one-parameter family of solutions.  Thus, y = 0 is a singular solution, and, as such, 

2
21

4
y x c⎛ ⎞= +⎜ ⎟

⎝ ⎠
 cannot be referred to as a general solution.  ■ 

 
The solution y = 0 is called the trivial solution. 
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Example 5:  2( ) tB t Ce=  is a one-parameter family of solutions of the ODE '( ) 2 ( )B t B t= .  
(Verify this.)  When c = 10, we the resulting particular solution is 2( ) 10 tB t e= .  Note 
that ( ) 0B t =  is also a solution (the trivial solution), and (unlike in the previous example) 
can be obtained by specifying a values for C in the one-parameter family of solutions.  
Every solution to the equation '( ) 2 ( )B t B t=  can be obtained from the solution 

2( ) tB t Ce= by simply specifying the constant C.  Hence, there are no singular solutions, 
and so 2( ) 10 tB t e= is a general solution. ■ 
 
A solution in which the dependent variable is expressed solely in terms of the 
independent variable and constants is called an explicit solution. 
 
Sometimes, we encounter solutions that are not explicit.  A relation 0),( =yxG is called 
an implicit solution of an ODE on an interval I provided it defines one or more explicit 
solutions on I.  
 

Example 6:  The relation 2 2 4 0x y+ − =  is an implicit solution of dy x
dx y

= −  on the 

interval (−2, 2).  (Verify this.)   This relation defines two explicit functions on this 
interval: 24y x= − and 24y x= − − .  ■ 
 
 
 


