MTH 202: Exam 1

Time: 30 minutes

Name: key

Use of notes, note cards, cellphones or PDAs are not allowed during the quiz.

(1) Find the directional cosines of the vector < 4, 2, 1 >. Show all the reasoning, in a step by step manner, which leads to the logical conclusion.

Let
$$\overline{V} = \langle 4, 2, 1 \rangle$$
.

$$\frac{1}{\sqrt{24}}, \cos \beta = \frac{1}{\sqrt{24}}, \cos \delta = \frac{1}{\sqrt{24}}$$

(2) Find the area of the triangle with vertices (2,0,-3), (1,4,5) and (7,2,9) using vectors. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

Let
$$\overrightarrow{PQ} = \overline{u}$$
 and $\overrightarrow{PR} = \overline{V}$ as seen in the figure.
 $\Rightarrow \overline{u} = \langle -1, 4, 8 \rangle$ and $\overline{V} = \langle 5, 2, 12 \rangle$.

$$\Rightarrow \bar{u}_{x\bar{v}} = \langle 32, 52, -22 \rangle = 2 \langle 16, 26, -11 \rangle$$

$$||\bar{u} \times \bar{v}|| = 2\sqrt{256 + 676 + 121}$$

$$= 2\sqrt{1053}$$

$$= 18\sqrt{13}$$

... The area of the triangle is 9 VI3 s. u./

(3) Find the equation of the plane containing the points (2, 1, 3), (3, 3, 5), and (1, 3, 6). Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

Let TT be the plane containing the points P, Q & R. (See figure.) Let $\bar{u} = P\bar{R}$ and $\bar{V} = P\bar{Q}$.

Then
$$u = \langle -1, 2, 3 \rangle$$
 and $v = \langle 1, 2, 2 \rangle$.

$$-2(x-2) + 5(y-1) - 4(2-3) = 0$$

$$2x - 5y + 4z - 11 = 0$$

(4) Find the point where the line which passes through the point (3, 5, -1) and is parallel to < 1, -1, 1 > pierces the xz-plane. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

Let $\bar{u} = \langle 1, -1, 1 \rangle$, and ℓ be the line passing thro' (3, 5, -1) and parallel to \bar{u} . Let $P(x_0, 0, x_0)$ be the point where ℓ pierces the xz-plane.

The vector equation of lis:

Let to be the value of t corresponds to P.
Then

$$\Rightarrow$$
 0 = 5-t, or t₀=5.

(5) Find the sine of the angle between $\overline{u}=<1,1,1>$ and $\overline{v}=<2,-1,3>$ Most simplified exact numerical answer is required. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

$$\overline{u} = \langle 1, 1, 1 \rangle \implies ||\overline{u}|| = \sqrt{3}.$$

$$\overline{V} = \langle 2, -1, 3 \rangle \implies ||\overline{v}|| = \sqrt{14}.$$

$$\overline{u} \times \overline{V} = \langle 4, -1, -3 \rangle$$

Since, || \[\inv \vec{v} || = || \vec{u} || \vec{v} || \sin \vec{v} | \sin \vec{v} | \text{ where } \vec{v} \ \text{ is the angle } \text{ between } \vec{u} \vec{v} \vec{v} | \text{ in } \vec{v} | \text{ of } \vec{v} |

$$\Rightarrow Sin\theta = \int \frac{13}{21}$$

Let I be the line of intersection of TT, and TT2.

and therefore, I l, since lis on TT.

and therefore, I P, since e is on TTz.

→ ū= n,×n, = <2,1,-3> // R, since ūs⊥ to both
n, 4 n, a oo l does.

Assume l'intersects the xy-plane at P(xo, Yo, 0).

Pison $T_1 \Rightarrow x_0 + y_0 = 4$, -0Pison $T_2 \Rightarrow 2x_0 - y_0 = 2$. -2

1)+(3) => 3x0=6 or x0=2. Therefore, y0=2.

.: The vector equation of l is:

<x, 4, 2> = <2,2,0> + t <2,1,-3> for some parametert.

(7) Find the point of intersection of the line x = 3 - t, y = 5 + 3t, z = -1 - 4t and the line x = 8 + 2t, y = -6 - 4t, z = 5 + t, if they intersect. If not, then decide if they are parallel or skew. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

Suppose the point of intersection is (xo, Yo, Zo).

Then for some t,

 $x_n = 3 - \xi_1$ — ①

=-1-4t1-3

for some t2,

 $y_0 = 5 + 3t_1 - 2$ and $x_0 = 8 + 2t_2 - 4$ $y_0 = -6 - 4t_2$ — (F)

≥0=5+t, —6

 $0 + 4 \Rightarrow t_1 + 2t_2 = -5 - 9$

- $(7+(-2)8) \Rightarrow -7t_1 = 7 \Rightarrow t_1 = -1$

5ub, t,=-1 in 0,2 3 3 →

 $x_0 = 4$, $y_1 = 2$, $z_0 = 3$.

We have not used @ yet. Use @ to check,

Is 3 = 5-2? The answer is yes.

.: The point of intersection is (4,2,3)./

(8) Name and sketch the quadric surface $x^2 - y^2 + z^2 + 2y = 1$. Make your sketch more accurate by identifying the necessary points on the surface. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

$$x^{2}-y^{2}+2y+z^{2}=1$$

$$\Rightarrow x^{2}-(y^{2}-2y+1)+z^{2}=0$$

$$\Rightarrow x^{2}-(y-1)^{2}+z^{2}=0$$

$$\Rightarrow (y-1)^{2}=x^{2}+z^{2}$$

This is a circular cone.

In xyz coord system; P = (0,1,0). (9) Transform the equation $z = \frac{1}{4}(x^2 + y^2)$ from rectangular coordinates to spherical coordinates. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

In spherical coordinates;

$$Z = \rho \cos \phi$$
,
 $X = \rho \sin \phi \cos \theta$, and
 $Y = \rho \sin \phi \sin \theta$.

$$\Rightarrow 4(\cos\phi = (^2Sin^2\phi)(\cos^2\theta + Sin^2\theta)$$

$$\Rightarrow$$
 $e=0$ or $4\cos\phi = e\sin\phi$

because the equation represents a circular parableted

·· Equation is
$$4\cos\varphi = \rho \sin^2\varphi$$

or $\rho = 4\cot\varphi \csc\varphi$ $\varphi + 0$

(10) Sketch the graph of the vector valued function $\overline{r}(t) = <2 + \sin t$, $3 - \cos t >$, $0 \le t < 2\pi$ accurately. Describe the graph in words precisely. Show all your reasoning, in a step by step manner, which leads to the logical conclusion.

Notice that x(t) = 2 + Sint and y(t) = 3 - Cost.

 \Rightarrow $\times -2 = Sint$ and y - 3 = -Cost.

 $(x-2)^2 + (y-3)^2 = 1$

This is a circle with conter (2,3) and radius 1,

When t=0, $\overline{r}(0)=\langle 2,2\rangle$ and When $t=\overline{z}$, $\overline{r}(\underline{z})=\langle 3,3\rangle$.

... The graph is a circle with center (2,3), radius 1 and orientation counterclockwise.